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Abstract Complex symbolic algebra, such as the manipu-
lation of second-quantized operators, Slater determinants,
Feynman diagrams, is inevitable in quantum chemistry.
Increasingly, these operations are performed by the com-
puterized systems that can handle higher mathematical con-
structs than just numbers and simple arithmetic. This article
reviews these new algorithms that automate the algebraic
transformation and computer implementation of many-body
quantum-mechanical methods for electron correlation. They
enable a whole new class of highly complex but vastly accu-
rate methods, the manual development of which is no longer
practical.

Keywords Symbolic algebra · Automated derivation and
implementation · Determinant- and string-based methods ·
Electron correlation

1 Introduction

Computational quantum chemistry [1–7] systematically trans-
lates a given problem of chemistry to mathematical equations
that are in turn subject to numerical solution by computers. In
principle, there is little room for empiricism, heuristics, intu-
ition, or any other form of nonscientific skills to enter these
processes. This is particularly true in the subfield of com-
putational quantum chemistry for electronic structure that
is based on ab initio molecular orbital theory. It embodies
hierarchies of methods of increasing accuracy and complex-
ity that eventually converge, in the rigorous mathematical
sense, at the exact solution of the Schrödinger equation for a
given expansion basis set for wave functions. Chemical prop-
erties and transformation can be simulated or predicted, with
unprecedented fidelity, by carrying through the application
of these hierarchical methods to a high enough order with a
large enough expansion basis set (e.g., Refs. [8–12]). Apart
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from the feasibility of such calculations, there is hardly any
question about the faultlessness of this systematic, autono-
mous procedure [13]. In this sense, computational quantum
chemistry may be one of the most immaculate fields of sci-
ence.

It is the construction of these hierarchical methods rather
than their applications that has set the pace of advancement of
the field. The development of configuration-interaction, cou-
pled-cluster, many-body perturbation theories, etc. involves
derivation, transformation, and implementation, all of which
are daunting tasks of symbolic manipulations. The derivation
refers to the process of expressing the methods defined in
the language of second quantization into mathematical equa-
tions (the sums of tensor products). These sum-of-product
tensor expressions are transformed into a form that exposes
an efficient computational sequence. Finally, this computa-
tional sequence is translated into computer programs. While
these tedious processes by themselves may be inessential to
chemistry or physics, they obviously dictate how complex a
method we can develop and use and how quickly such pro-
gresses can be made in practice.

In the past, these processes are usually carried out by
hand. However, this manual processing will soon cease to be
a practical means for the symbolic manipulation in higher-
order electron-correlation methods owing to its sheer volume
and complexity. For instance, the coupled-cluster (CC) meth-
ods [14–22] containing through connected double, triple, or
quadruple excitation operator (abbreviated as CCSD [23,24],
CCSDT [25,26], and CCSDTQ [27,28]), which are defined
by only three, four, and five second-quantized expressions,
are expanded into the mathematical equations composed of
48, 102, and 183 antisymmetrized groups of tensor prod-
ucts, respectively, each of which in turn can contain up to
144 individual products. Figure 1 illustrates the complex-
ity of one of the five tensor equations defining CCSDTQ.
Each product, say, ABCDE (each letter representing a ten-
sor) can be evaluated in a number of ways, (((AB)C)D)E,
((BC)(DE))A, ((CD)A)(BE), etc., and furthermore a sum-of-
product expression, e.g., ABCD+ABEF, is subject to factor-
ization: A(B((CD)+(EF)), B(C(AD)+A(EF)), etc. Whereas
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Fig. 1 The T4 amplitude equation of the CCSDTQ method
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the result of the contraction does not depend on the order of
evaluation owing to the commutative and distributive nature
of tensor contraction and addition, the operation cost does
depend strongly on it. Finding the most expedient order by a
blanket search is out of the question without a computer and
is difficult even with a computer. Once a reasonable computa-
tional sequence is found, its implementation must also honor
any additional computational advantages that are brought to
by symmetries of the wave function and characteristic length
scales of interactions. Not a single error will be tolerated
throughout the entire procedure.

Clearly, these symbolic algebraic processes must be com-
puterized. Apart from expediting the time-consuming and
error-prone derivation and implementation processes, the
computerization will also facilitate the parallelization and
other laborious optimization of the computer codes and en-
hance their maintainability, portability, and extensibility.
However, most importantly, it enables a whole new class
of many-body electron-correlation methods with unprece-
dented complexity and accuracy, the manual development of
which is no longer practical or even possible.

What makes such computerization of quantum chemis-
try possible and effective is the systematic nature of the rules
and strategies that govern the whole symbolic manipulation
processes. If the rules varied considerably from one case to
another, computerizing would be even more burdensome than
straightforward manual processing. However, all of the der-
ivation, transformation, and implementation processes are
highly systematic. The vast majority of many-body electron-
correlation methods are defined by the expectation values
of a combination of second-quantized creation and annihila-
tion operators for some Slater determinants. The evaluation
of the expectation values can be performed by mechanical
applications of either Slater’s rules or the commutator rules
of second quantization or by normal ordering followed by the
application of Wick’s theorem [29–32]. Alternatively, Gold-
stone or Hugenholtz diagrams may be used [31–36]. The
resulting mathematical expressions are, as mentioned before,
invariably the sum-of-product tensor expressions, which are
again subject to computerized transformation and implemen-
tation. Systematic strategies for the latter include Kuchar-
ski and Bartlett’s computational linearization and recursive
factorization [37] that together suggest near-optimum com-
putational sequences for the coupled-cluster equations, the
direct product decomposition proposed by Stanton et al. [38]
for point-group symmetry usage, and the index permutation
symmetry logic by Kállay and Surján [39]. These systematic
strategies exalt the art of derivation and implementation into
the science of machine-executable algorithms.

The last few years have seen considerable advances in
computerized symbolic algebra in many-body electron-cor-
relation methods. However, as is evident from the previous
paragraph, these advances are the direct consequence of the
body of knowledge accumulated by the prior manual or semi-
computerized derivation and implementation efforts, the lat-
ter being limited only by computer power. In fact, the most
labor-intensive areas of computational quantum chemistry,
e.g., that of coupled-cluster theory, many-body perturbation

theory, molecular integral evaluation and multipole expan-
sions of long-range forces, spin and spatial symmetry adap-
tation of wave functions, exchange-correlation functionals in
density functional theory, have always embraced the comput-
erization or graphical systematization as its predecessor (the
vast field of symbolic algebra in chemistry in general has been
the topic of a more comprehensive review by Barnett et al.
[40]). These incessant efforts to simplify symbolic algebra
were also responsible for some of the breakthroughs in the
field, e.g., the linked cluster theorem and the concept of size-
extensivity [33,34,41]. In this article, confining ourselves to
electron correlation, we review the new paradigm of method
development by virtue of computerizing the symbolic alge-
bra.

2 Automated derivation and implementation

2.1 Automated derivation of perturbation theory

Wong and Paldus [42,43] were among the first to report
an algorithm and the corresponding computer program that
automated the derivation of many-body perturbation theory
at any given order. This algorithm essentially simulates the
diagrammatic (as opposed to algebraic) derivations of order-
by-order perturbation corrections to energy. Their program
generates all topologically distinct, linked diagrams of the
Hugenholtz type, which can in turn be expanded to the Gold-
stone diagrams. Each diagram is represented by a string of
integers; a similar technique was later employed by Kállay
and Surján [39] in their string-based coupled-cluster method
and by others. See also Csépes and Pipek [44] and Herbert
and Ermler [45] (the latter is an application to molecular
vibrational–rotational analyses).

2.2 Automated derivation of coupled-cluster theory

The coupled-cluster expansion was originally introduced by
Coester and Kümmel [46,47] in nuclear physics and applied
to quantum chemistry by Čížek and Paldus [35,48–50]. Čížek
[35] detailed the second-quantization rules (including nor-
mal-ordered operators and their anti-commutation relations)
and corresponding Feynman diagrams for deriving the alge-
braic equations of the spin-orbital and spin-adapted coupled-
cluster doubles (CCD) methods and, with assistance from
Paldus, performed the first CCD calculations of N2 and ben-
zene with a limited number of correlated orbitals. Two capti-
vating personal accounts by Paldus [51] and by Bartlett [52]
on coupled-cluster developments will appear. Their modern
implementation style was shaped by the CCD development
of Pople et al. [53] and of Bartlett and Purvis [54] and by the
CCSD development of Purvis and Bartlett [23]. What is less
known is the fact that this initial implementation of CCSD
has been assisted by symbolic computer program Kommute

(written by Purvis) that verified the diagrammatic derivation.
The coupled-cluster methods were sufficiently complex even
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at its lower orders to warrant an expedient diagrammatic tech-
nique or a computerized system or the combination of both.
Harris [32] was among those who helped establish these tech-
niques, although his automated derivation system based on
Maple was not published until much later [55]. Other sym-
bolic manipulation systems for second-quantized operators
have been developed by Berente et al. [56] in their spin-
restricted CCSDT development, by Bochevarov and Sherrill
[57], and by Knowles and Handy [58]. Some of these groups
have used general mathematical packages such as Mathemat-
ica and Reduce as the basis of their symbolic manipulation
programs. For the simplest reference wave functions, it is
possible to derive and also solve algebraic coupled-cluster
equations by using Maple. In this fashion, Čížek et al. [59]
performed approximate CCSDT calculations (equivalent to
the so-called CCSDT-1) of benzene within the Pariser–Parr–
Pople model, whereas Piecuch et al. [60] studied the effect of
the connected quadruple excitation operator on quasi-degen-
erate wave functions of hydrogen atom cluster models.

2.3 Automated implementation (Janssen and Schaefer)

An important advance was made by Janssen and Schaefer
[61] who, in addition to automating the derivation, also com-
puter synthesized the codes. Theirs was the most remarkable
early attempt to explore the full potential of computerized
symbolic algebra in quantum chemistry. They introduced a
number of general techniques for rapid pattern matching,
data representation, code generation, and optimization. The
automatic derivation of the working equations for any given
method defined in terms of second-quantized operators and
Slater determinants is only one of the capabilities of their
computerized system Sqsym. Once these sum-of-product
tensor equations are derived, the Sqsym subsequently per-
forms the strength reduction, a process that determines an
optimal binary contraction order for each tensor product.
After an exhaustive search, the order with the least opera-
tion cost is identified, e.g., ((AB)C)D for a tensor product
ABCD, defining intermediate tensors: I1 = AB, I2 = I1C,
and I3 = I2D. If two or more orders have the same min-
imum operation cost, the one requiring the least memory
space for intermediate tensors is chosen. Furthermore, the
Sqsym recognizes the occurrence of the same intermediate
tensors in different tensor products. These are reusable inter-
mediates that need not be computed more than once. The
Sqsym-synthesized programs compute and store them once
and reuse them as many times as needed. This is an example
of a general compiler optimization technique called common
subexpression elimination. The computational sequence thus
determined were not translated into Fortran or any other
general computer language, but instead directly interpreted
and executed by another program Corr. It has an in-place bi-
nary tensor contraction engine at its algorithmic core, which
can make use of Abelian point-group symmetry and index
permutation symmetry to a limited extent; a similar contrac-
tion engine has been devised by Cole and Purvis [62] and

by Kucharski and Bartlett [37]. The Sqsym has enabled the
automatic derivation and implementation of a spin-adapted
high-spin open-shell coupled-cluster method with single and
double cluster excitation operators.

2.4 Automated implementation (Li and Paldus)

A more general spin-adapted open-shell coupled-cluster
method has been developed by Li and Paldus [63]. The method
uses an approximate wave function completely analogous to
the single-reference coupled-cluster theory, but with a ref-
erence configuration that is a spin-adapted combination of
determinants and with the cluster excitation operators that
are orthogonal unitary group operators. It has the desirable
property of the invariance with respect to the orbital rotations
separately among the core, valence, and virtual spaces. The
cluster excitation operators that satisfy this condition and give
rise to spin-adapted states for open-shell singlet, doublet, and
triplet states are sufficiently complex to warrant computer-
ized derivation and implementation. For instance, the single
and double cluster excitation operators for open-shell triplets
now have thirty different types as opposed to only two for
the spin-orbital case. All necessary matrix elements involv-
ing these operators are automatically generated by systematic
consideration of permutation symmetry among the core, va-
lence, and virtual spaces. Subsequently, their automated sys-
tem simplifies the derived formulae, groups the terms, and
searches for common loops and integrals. Furthermore, the
computer-synthesized Fortran programs can take advan-
tage of Abelian point-group symmetry and frozen core and
virtual orbitals. A closely related work (unitary-group-based
open-shell CCSD and automated derivation and implemen-
tation) was reported by Jankowski and Jeziorski [64].

2.5 Automated implementation (Crawford et al.)

A spin-adapted non-iterative, perturbation correction accoun-
ting for the effect of connected triple excitations to open-
shell CCSD is also faced with greatly increased complex-
ity in the formalisms. Crawford et al. [65] considered one
such scheme, termed CCSD(zT), that is based on Z -aver-
aged perturbation theory (ZAPT) of Lee and Jayatilaka [66]
and that maintains desirable orbital invariance properties.
The ZAPT divides single, double, and triple cluster exci-
tation operators into three, six, and ten distinct component
operators, respectively, according to the occupancy of dou-
bly or singly occupied orbitals, giving rise to a multitude of
terms in the (zT) energy correction. These authors devised
a Mathematica-based symbolic algebra program that enu-
merates all these distinct mathematical terms in their energy
expression. Furthermore, the translation of these into a com-
puter program has also been automated. A considerable care
was exercised in verifying the computer-generated programs.
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2.6 Automated implementation (Nooijen and Lotrich)

Inspired by the above-mentioned work of Li and Paldus [63],
Nooijen and Lotrich [67] explored the use of double sim-
ilarity transformation for defining a new open-shell CCSD
method. While the computational complexity of the method
is no worse than O

(
n6

)
(n being the measure of molec-

ular size), the complexity of development is significantly
increased by the use of two exponential excitation operators
and another linear excitation operator acting on the reference
determinant.

They developed an automated system for formula deriva-
tion and computer implementation called Apg to overcome
this increasingly burdensome symbolic algebra. The Apg

consists of three modules. The first of the three performs the
automated derivation of a set of spin-adapted or spin-orbi-
tal many-body equations from input high-level definitions.
This part uses Wick’s theorem for normal ordered second-
quantized operators and is generally applicable to most any
ansatz. Furthermore, it has additional capabilities that go out-
side the domain of the second-quantized language such as
the multiplication of density matrices, detecting and discard-
ing disconnected diagrammatic terms, and differentiating the
equations. This step uses the rapid pattern matching tech-
niques similar to the ones reported earlier by Janssen and
Schaefer [61]. The second part performs the strength reduc-
tion followed by factorization, which were assumed to be
decoupled. The third step implements the computational se-
quences generated by these two previous steps into computer
programs that are as efficient as the equivalent, hand-written
ones. This efficiency has been achieved by delegating the
compute-intensive kernel of tensor contractions to highly-
tuned library subroutines that are called by the computer-
synthesized programs in an appropriate order.

The Apg has rapidly developed new, highly involved but
accurate methods for electron correlation such as extended
similarity-transformed equation-of-motion (STEOM) CCSD
[68], Brueckner-based generalized coupled-cluster method
[69], and state-selective multireference coupled-cluster
method [70]. The unique capability of the Apg for differ-
entiation is essential when the methods for analytical eval-
uation of energy derivatives or higher-order properties are
sought. This has also been extended to a remarkable degree
by M. Wladyslawski and M. Nooijen (private communica-
tion) in their symbolic manipulation program Smart and was
used for the automatic derivation of analytical energy gra-
dient formulae of STEOM-CCSD for excited, ionized, and
electron-attached states and other related methods such as
CCSD for the ground, excited, (one- and two-electron) ion-
ized, and (one- and two-electron) electron-attached states.
It has also been used in a cumulant expansion of reduced
density matrices [71].

2.7 Automated implementation (Hirata)

Currently, one of the most advanced symbolic computing sys-
tems for electron correlation is the Tensor Contraction Engine

(Tce) developed by us [72]. It automates all three basic
constituents of symbolic algebra for computational quantum
chemistry — derivation, transformation, and implementa-
tion. The input of the Tce is a second-quantized definition
of any given many-electron theory that uses the following
expectation value,

〈�0|
(

L̂†�̂R̂1 · · · R̂n

)

C/L
|�0〉 , (1)

where |�0〉 is a ground-state Slater determinant that can be
(but is not limited to) a restricted or unrestricted Hartree–
Fock reference wave function. The spin-orbital operator �̂
is a physical operator of any rank (the Hamiltonian opera-
tor, dipole moment operator, etc.), R̂1 · · · R̂n is a composite
operator of several excitation operators of any rank, L̂† is a
deexcitation operator of any rank, and (· · · )C/L means that
the connectedness and linkedness among a selected group
of operators can be imposed. Equation (1) may look restric-
tive but it covers a multitude of electron-correlation methods
listed below.

The Tce derives sum-of-product tensor expressions for
the ansatz of type (1) using Wick’s theorem for normal-
ordered second quantization. Each of the tensor products car-
ries an appropriate index permutation operator, reflecting the
anti-symmetry of spin-orbital wave functions. These mathe-
matical expressions are then automatically transformed into
computational sequences (Fig. 1). The steps are the strength
reduction, the factorization, and the common subexpression
elimination. Figure 2 illustrates these steps for the T1 ampli-
tude equation for CCSD.

The automated implementation of the computational
sequences thus determined must honor domain-specific opti-
mizations: the use of spin and spatial symmetry of the mole-
cule in question and index permutation symmetries of tensors
and tensor equations. Among these, the use of spin and spa-
tial symmetries, which amounts to excluding tensor elements
that are symmetrically zero from storage and arithmetic, is
relatively straightforward. Rather, the challenge is to thor-
oughly incorporate the index permutation symmetry logic
into automatically synthesized programs; they must distin-
guish unique tensor elements from symmetrically equivalent
ones and exclude the latter from storage and arithmetic. To
do so, the Tce must know the index permutation symmetries
of not only input and output tensors but also of intermediate
tensors that differ from one method to another and from one
computational sequence to another.

The initial solution to this problem has been suggested
by Kállay and Surján [39] (see Sect. 3.4). Currently, we have
an understanding of which permutation symmetries the inter-
mediate tensors of many-electron methods defined by Eq. (1)
possess and which computational sequences give rise to the
most symmetrical intermediate tensors [72–74]. For instance,
each of the intermediate tensors of a coupled-cluster method
of any order can be shown to have not more than four groups
of permutable indices, when an appropriate computational
sequence is chosen. The Tce’s program synthesis algorithm
is based on this critical information.
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Fig. 2 Automated derivation and transformation of the CCSD T1 amplitude equation. (1) The second-quantized definition. (2) Expanded nor-
mal-ordered second-quantized definition. (3) The sum-of-product tensor expressions obtained after the contraction of creation and annihilation
operators and the deletion of disconnected terms. (4) The result of strength reduction and the definition of intermediate tensors as binary tensor
products. (5) The result of factorization and the redefinition of intermediate tensors as sums of binary tensor products. (6) The identification of
reusable intermediate tensors (common subexpression elimination)
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Fig. 3 The speedup (relative to the eight processor run) of a parallel
execution of the perturbation correction calculation of the CCSD(T)
code [75]

Another difficult problem is to find efficient storage and
contraction algorithms for tensors with multiple symmetry
attributes. These algorithms must also be general enough to
be subject to automation. Kállay and Surján [39] resorted to
the string-based algorithm (see Sect. 4.8) to address this issue
effectively, whereas we employed the so-called tiling algo-
rithm. The latter divides the orbital range into spin- and spa-
tial-symmetry-adapted groups (tiles) and handles the tensors
at the tile level rather than at the element level. This allows the
Tce to incorporate the complex permutation symmetry logic
as well as the spin and spatial symmetry ones in loops over
tiles (not elements) in the synthesized programs (cf. the direct
product decomposition scheme in Sect. 3.2). In this way, we
can capture the essential symmetry advantages and simulta-
neously avoid an excessive overhead of examining symmetry
properties of individual elements of tensors. Furthermore, the
tile-wise tensor contractions are largely independent opera-
tions from one another and are ideally executed in parallel.

The Tce has synthesized the parallel execution programs
for configuration-interaction, many-body perturbation, and
coupled-cluster methods through fourth order [72], coupled-
cluster � equation solver for ground-state properties, and
equation-of-motion coupled-cluster methods for excitation
energies and excited-state properties through fourth order
[73]. It has also semi automated the development of vari-
ous second-order perturbation corrections to coupled-cluster
methods [75] and second- [76] through fourth-order perturba-
tion corrections to configuration-interaction singles for exci-
tation energies [77]. The critical importance of our ability
to verify and validate the optimized computer programs was
emphasized recently in the context of computational phys-
ics [78]. All of our automatically synthesized programs were
tested against independent determinant-based implementa-
tions (see Sect. 4). The scalability of the parallel execution
speed is reasonable for the perturbation correction calcula-
tion in CCSD(T) (Fig. 3) [75]. The synthesized programs
are characterized by the optimal polynomial dependence on
the system sizes [e.g., O

(
n2k+2

)
for kth order coupled-clus-

ter methods], by the use of spin symmetry (within the spin-
orbital formalisms), real Abelian point-group symmetry, and
index permutation symmetry at every stage, and by the gen-
eral applicability to open- and closed-shell molecules. These
computerized implementations enabled highly accurate pre-
dictions of spectroscopic properties of small molecules, some
containing heavy elements (Tables 1–3) [11].

2.8 Computerized optimizations

In addition to the strength reduction, factorization, and com-
mon subexpression elimination mentioned above, automated
implementations can perform coupled strength reduction and
factorization, memory minimization (that fuses common loops
and minimizes the memory consumption without increasing
the operation cost), space-time-tradeoff (that more aggres-
sively minimizes the memory consumption by recomputing
some large input or intermediate tensors), data partitioning
(that maximizes the data locality and minimizes the interpro-
cessor communications in parallel executions), etc. These
are employed in conjunction with the domain-specific opti-
mizations (symmetries, sparsity, boundary conditions, etc.).
A unique accomplishment is being made along this direc-
tion by a team of quantum chemists and computer scientists
led by Sadayappan [79–82]. For instance, their optimization
capability can perform an exhaustive or quick search of the
coupled strength reduction and factorization problem (see
Refs. [61,67] for discussions on its impossibly vast search
space). This yields an efficient computational sequence for,
e.g., CCSD and CCSDT equations. When the ratio of the
number of virtual orbitals (v) to the number of occupied
orbitals (o) becomes high, the decrease in the number of
O

(
o1v4

)
contractions at the cost of the increase in the num-

ber of O
(
o4v2

)
contractions leads to an overall cheaper com-

putational sequence for the CCSD T2 equation [80]. This runs
counter to the intuition of most quantum chemists.

Lotrich et al. (private communication) developed a com-
puter language specialized for the development of scalable
parallel computer programs for coupled-cluster and other
electron-correlation methods. This computer language, called
the super instruction assembly language (SIAL), is placed
higher in the scale of abstraction than the usual high-level
computer languages such as Fortran or C. It describes the
necessary arithmetic operations and in-core and out-of-core
data storage and retrieval across different processors in an
abstract syntax. This enabled Lotrich et al. to implement var-
ious alternative parallel algorithms of computing energies
and analytical energy gradients at the CCSD level in a short
time.

3 Systematization of symbolic algebra in quantum
chemistry

3.1 Diagrammatic techniques

It must not be overlooked that, in the context of manual devel-
opment of electron correlation methods, considerable efforts
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Table 1 Equilibrium bond lengths (re in Å) and dissociation energies (D0 in eV) of second- through fifth-row diatomic hydrides [11]

Diatomic hydrides re D0

Theory Experimental Theory Experimental

BH 1.233 1.232 3.53 3.54
CH 1.120 1.120 3.47 3.47
NH 1.037 1.037 3.39 3.40
OH 0.970 0.970 4.40 4.39
FH 0.917 0.917 5.85 5.87
AlH 1.649 1.648 3.07 3.06
SiH 1.522 1.520 3.07 3.04
PH 1.425 1.422 3.03 3.02
SH 1.344 1.341 3.61 3.62
ClH 1.278 1.275 4.41 4.43
GaH 1.659 1.663 2.82 <2.84
GeH 1.587 1.588 2.82 <3.3
AsH 1.523 1.523 2.75 2.77
SeH 1.465 1.464 3.19 3.2
BrH 1.415 1.414 3.74 3.76
InH 1.841 1.838 2.46 2.48
SnH 1.771 1.770 2.53 <2.73
SbH 1.712 1.711 2.47
TeH 1.656 1.656 2.76
IH 1.609 1.609 3.05 3.05

The theoretical estimates are based on the various combinations of CCSD, CCSDT, and CCSDTQ results and cc-pVDZ, TZ, and QZ basis sets.
The corrections due to the special theory of relativity are taken into account within the third-order Douglas–Kroll approximation. For the details
of complete-basis-set extrapolation and the sources of experimental data, the readers are referred to the original paper [11]

Table 2 Singlet–triplet separations (in kcal mol−1) of CH2, NH+
2 , SiH2, PH+

2 and AsH+
2 [11]

CH2 NH+
2 SiH2 PH+

2 AsH+
2

Theory 9.1 29.3 −20.9 −18.3 −23.2
Experiment 9.0 30.1 −21.0 −18.4 −23.8

The theoretical estimates are based on the various combinations of CCSD, CCSDT, and CCSDTQ results and cc-pVDZ, TZ, QZ, and 5Z basis
sets. The zero-point vibrational energy, relativistic, and core correlation (and Born–Oppenheimer for CH2) corrections are taken into account.
For the details of complete-basis-set extrapolation and the sources of experimental data, the readers are referred to the original paper [11]

Table 3 Adiabatic excitation energies of CH and vertical excitation energies of formaldehyde (in eV) [73]

CH a4�− A2� B2�− C2�+

EOM-CCSDT/aug-cc-pVTZ 0.74 2.94 3.27 4.03
Experiment 0.74 2.88 3.23 3.94

CH2O 1 A2
1 B2

1 B2
1 A1

1 B1

EOM-CCSD/d-aug-cc-pVTZ 3.92 7.18 8.02 8.12 9.06
EOM-CCSDT/aug-cc-pVDZ 3.99 7.02 7.99 8.05 9.29
Experiment 4.0 7.08, 7.10 7.97, 7.98 8.14 9.03

have been made to systematize and generalize the strategies
for efficient and accurate symbolic manipulations. These are
the foundation of the above-mentioned computerized meth-
ods. It is well known that the specialized form of Feyn-
man diagrams for many-body perturbation theory devised by
Goldstone led to the linked cluster theorem and the concept
of size extensivity [33,34,41]. This and related diagrammatic
techniques and underlying normal ordering and Wick’s theo-
rem [29–32] can be viewed as the predecessor of the ultimate
simplification of this entire process – the complete automa-
tion. It is extraordinary that coupled-cluster method includ-
ing up to as high as quintuple cluster excitation operator [83,
84] and equation-of-motion coupled-cluster method includ-
ing triple cluster and linear excitation operators [85–88] have
been developed manually by this time-honored technique.

3.2 Recursive intermediate factorization and direct product
decomposition

Others include the strength reduction (computational linear-
ization) of coupled-cluster equations [32,37]. Kucharski and
Bartlett [37] proposed a simple algorithm (recursive inter-
mediate factorization) for factorizing these computationally
linearized coupled-cluster equations, which is suitable for
automation. This may not yield an optimally efficient compu-
tational sequence for any given coupled-cluster equation, but
is reasonable and has been adopted by Nooijen and Lotrich
[67] and by us [72] in their automated systems. The di-
rect product decomposition scheme of Stanton et al. [38]
is a systematic and general algorithm of incorporating Abe-
lian point-group and other symmetries (e.g., double group
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symmetry in relativistic quantum chemistry) in virtually any
electron-correlation calculations that are in essence the evalu-
ation of sum-of-product tensor expressions. Hence, this offers
a universal algorithm for computerized program synthesis.
Stanton et al. [38] observed that their algorithm exposes an
adequate granularity of parallelism, which has later been
demonstrated to be the case by us [72].

3.3 Tensor formulation of many-electron theories

Another important generalization of electron-correlation the-
ories was brought forth by Head-Gordon et al. [89]. They have
shown that, when recast in the most general form that accom-
modates any reference orbitals, many-body electron-corre-
lation methods are invariably in the sum-of-product tensor
expressions. For instance, the usual Møller–Plesset perturba-
tion energy expressions that involve orbital energies (which
are vectors) can be brought to a more general tensor algebraic
form that no longer involves orbital energies. This general
tensor formalism, unlike the mixed tensor-vector formal-
ism, works with noncanonical or nonorthogonal reference
orbitals and is considered more fundamental. The formal-
isms of disparate groups of theories (coupled-cluster, con-
figuration-interaction, many-body perturbation theories, and
various combinations thereof) are subject to the unified rep-
resentation that is best suited to computerized derivation and
implementation.

3.4 Index permutation symmetry of intermediate tensors

Electron-correlation methods are defined either in spin-
adapted forms or in spin-orbital forms. In the latter, the thor-
ough use of index permutation symmetry in the tensor storage
and contractions is crucial [39]. For instance, a tensor repre-
senting the triple excitation operator T p1 p2 p3

h4h5h6
(p and h denote

particle and hole indices, respectively) has the 36-fold index
permutation symmetry:

T p1 p2 p3
h4h5h6

= −T p1 p3 p2
h4h5h6

= −T p2 p1 p3
h4h5h6

= T p2 p3 p1
h4h5h6

= T p3 p1 p2
h4h5h6

= −T p3 p2 p1
h4h5h6

= −T p1 p2 p3
h4h6h5

= T p1 p3 p2
h4h6h5

= T p2 p1 p3
h4h6h5

= −T p2 p3 p1
h4h6h5

= −T p3 p1 p2
h4h6h5

= T p3 p2 p1
h4h6h5

= −T p1 p2 p3
h5h4h6

= T p1 p3 p2
h5h4h6

= T p2 p1 p3
h5h4h6

= −T p2 p3 p1
h5h4h6

= −T p3 p1 p2
h5h4h6

= T p3 p2 p1
h5h4h6

= T p1 p2 p3
h5h6h4

= −T p1 p3 p2
h5h6h4

= −T p2 p1 p3
h5h6h4

= T p2 p3 p1
h5h6h4

= T p3 p1 p2
h5h6h4

= −T p3 p2 p1
h5h6h4

= T p1 p2 p3
h6h4h5

= −T p1 p3 p2
h6h4h5

= −T p2 p1 p3
h6h4h5

= T p2 p3 p1
h6h4h5

= T p3 p1 p2
h6h4h5

= −T p3 p2 p1
h6h4h5

= −T p1 p2 p3
h6h5h4

= T p1 p3 p2
h6h5h4

= T p2 p1 p3
h6h5h4

= −T p2 p3 p1
h6h5h4

= −T p3 p1 p2
h6h5h4

= T p3 p2 p1
h6h5h4

. (2)

Any implementation that does not take advantage of this
symmetry will be consuming too much memory and involv-
ing too many redundant arithmetic operations to be useful.
The prize will be progressively greater with the increasing
order of electron-correlation methods. The index permuta-
tion symmetry for T p1 p2 p3 p4

h5h6h7h8
and T p1 p2 p3 p4 p5

h6h7h8h9h10
is 576 and

14,400 fold, respectively. This ultimately reflects the anti-
symmetry of wave functions and has more profound physical
significance than just a performance optimization aspect. In
fact, spin-orbital coupled-cluster programs that do not pay
due attention to the index permutation symmetry can yield a
non-physical wave function that satisfies neither Fermi–Di-
rac nor Bose–Einstein statistics [72].

Nonetheless, the index permutation symmetry has largely
been ignored in automated implementation until recently.
This is partly because the index permutation symmetry of
intermediate tensors – the tensors which are neither input nor
output tensors and that result from the strength reduction and
factorization – was not even known a priori. However, in an
important paper (mentioned in Sect. 4.8 in a greater detail) by
Kállay and Surján [39], they showed that, for a certain class
of electron-correlation methods (including coupled-cluster
methods for the ground state), the intermediate tensors aris-
ing from reasonably optimal computational sequences indeed
have a priori known index permutation symmetry, i.e.,

I e1<···<ea ,i1<···<ic
ea+1<···<eb,ic+1<···<id

, (3)

where e and i represent external indices (the indices of output
tensors) and internal (summation) indices, respectively. Each
group of indices that are arranged in an ascending order is
permutable; each and any intermediate tensor has (at maxi-
mum) four groups of permutable indices in contrast to two
or four groups in the input and output tensors.

This observation is the cornerstone of their string-based
coupled-cluster methods and our automated system Tce that
achieve the optimal theoretical efficiency of O

(
n2k+2

)
for

kth order approximation and take advantage of permuta-
tion symmetry for storage and contraction of input, output,
and intermediate tensors. The logic for the index permuta-
tion symmetry for intermediate tensors has been extended to
coupled-cluster analytical gradients [90], to coupled-cluster
methods for excited states and excited-state properties [73,
90], etc.

4 Determinant- and string-based methods

4.1 General-order perturbation method

Avoiding the tedious manual symbolic algebra can also be
achieved by schemes alternative to complete automation. One
such scheme is the determinant-based algorithm that enables
general-order coupled-cluster and many-body perturbation
methods without any explicit consideration of the methods
at individual orders. This, just as the automated systems,
manipulates higher mathematical constructs such as Slater
determinants and operators, rather than just numbers and
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simple arithmetic. Therefore, the difference between the two
approaches is merely in whether the computerized symbolic
manipulations occur at run time (in the determinant-based
algorithm) or at compile time (in automation). Highly effi-
cient algorithms of handling determinants (and spin-adapted
configurations) [90] have been devised for truncated or full
configuration-interaction methods [92–98].

In this algorithm, a wave function is represented compu-
tationally (not just conceptually) as a linear combination of
Slater determinants and each determinant is in turn expressed
by a pair of α and β strings of bits specifying the α and β orbi-
tal occupancies. Knowles and Handy [92] developed an inge-
nious algorithm to map these strings to consecutive, lexical
addresses and performed rapid second-quantized operations
on the determinants represented by these strings. This and
related algorithms therefore permit the facile implementa-
tion of the whole hierarchical methods in a single algorithmic
framework. For instance, with the highest level of generality,
the Rayleigh–Schrödinger perturbation expansions of exact
energy and wave function can be defined in a recursive fash-
ion as

E (i) =
〈
�(0)

∣
∣∣ V̂

∣
∣∣�(i−1)

〉
, (4)

(
E (0) − Ĥ0

) ∣∣
∣�(i)

〉
= V̂

∣∣
∣�(i−1)

〉
−

i∑

j=1

E ( j)
∣∣
∣�(i− j)

〉
, (5)

where E (i) and
∣∣�(i)

〉
are the i th order corrections to energy

and wave function and the Hamiltonian operator is parti-
tioned as Ĥ = Ĥ0+V̂ . Representing second-quantized oper-
ators and wave functions as computational objects that can
be explicitly and directly handled by the algorithm, one can
translate these equations literally into a single computer code
and perform the perturbation expansions to any arbitrary high
order. In this fashion, Knowles et al. [99] carried out Møller–
Plesset perturbation calculations (Ĥ0 is the sum of one-parti-
cle Fock operators) through tenth order. Essentially the same
method has been proposed independently by Laidig et al.
[100], who studied the convergence of the Møller–Plesset
perturbation expansion through fifth order. An application to
molecular vibrations has also been reported by Christiansen
[101].

The generality and ease of implementation brought to by
the determinant-based algorithm come at the cost of consid-
erably increased number of operations. The calculation of
the wave function and energy at each perturbation order in-
volves a factorial number of determinants and its cost scaling
is essentially that of full configuration-interaction method.
When a priori information about the structure of wave func-
tions (e.g., the knowledge of the highest rank of the con-
stituent excited determinants) is used, the cost scaling can
be reduced, but to a level that is still much higher than the
optimal one. Therefore, the applicability of this algorithm
for perturbation theory is severely limited, but its generality
makes it indispensable for initial assessments of the perfor-
mance of the whole hierarchical methods and for obtaining
reference computer programs against which more optimized

programs can be verified. For instance, Knowles and Handy
[58] used this algorithm to verify their open-shell second-
order Møller–Plesset perturbation method.

4.2 Divergence of perturbation series

It was with the aid of the determinant-based algorithm that
Olsen and coworkers [102–104] made a striking observation
about the divergence of the Møller–Plesset perturbation the-
ory. While occasional divergent behavior in perturbation the-
ory is well known (electron gas, hydrogenic stark effect, and
harmonic oscillator) [105,106], they found that the Møller–
Plesset perturbation expansion of a wave function dominated
by a single determinant can frequently become divergent by
the presence of diffuse basis functions [102]. The seemingly
sensible use of the aug-cc-pVDZ basis set [107] for the neon
atom, the fluorine anion, and hydrogen fluoride all results in
oscillatory divergent behavior manifesting itself at the 16th,
5th, and 14th orders, respectively. The cause of this is now
identified as the intruder states [108] – spurious low-lying
excited states – that make the single-determinant reference
appear less dominant in the wave function and perturbation
treatment of electron correlation less adequate (the most thor-
ough analysis on this subject appeared recently [109]). On
this basis, Olsen et al. [102] and others [110] questioned the
fundamental value of the Møller–Plesset perturbation theory
as a convergent many-electron theory, while others argue in
favor of the theory that the divergent series contains sufficient
information to recover the same exact limit in a number of
ways, e.g., variation perturbation theory [111], Padé approx-
imant [109,111,112], Feenberg scaling [113] (see Table 4).

4.3 General-order coupled-cluster method

Evidently, the determinant-based algorithm is applicable to
any method that possesses a wave function that is a lin-
ear combination of Slater determinants. Such methods in-
clude coupled-cluster methods and various combinations of
coupled-cluster and many-body perturbation or configura-
tion-interaction methods. The initial applications of the algo-
rithm to the entire hierarchy of standard (i.e., projection-type)
coupled-cluster methods were reported independently by us
[111], by Kállay and Surján [114], and by Olsen [115]. The
algorithm proposed by us [111] consisted of generating the
coupled-cluster wave function explicitly as a linear combi-
nation of Slater determinants,

|�〉=exp
(

T̂
)

|�0〉=
(

1 + T̂ + T̂ 2

2! + · · · + T̂ m

m!
)

|�0〉 , (6)

and then having the wave function satisfy the projection equa-
tions

〈�0| Ĥ |�〉 = E, (7)
〈
�

p1
h2

∣∣∣ Ĥ |�〉 = E
〈
�

p1
h2

∣∣∣ �
〉
, (8)

〈
�

p1 p2
h3h4

∣∣
∣ Ĥ |�〉 = E

〈
�

p1 p2
h3h4

∣∣
∣ �

〉
, (9)
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Table 4 Convergence of configuration-interaction, many-body perturbation, coupled-cluster methods for the fluorine anion (with the 6-31+G
basis set) studied by the determinant-based algorithm [111]

Order CI MBPT VPCI Padé CC

1 0.151798 0.151798 0.151798 0.151798
2 0.009614 −0.000415 0.016774 0.011727 0.003662
3 0.007507 0.012780 0.003572 0.005326 0.000290
4 0.000442 −0.004349 0.000509 0.002144 −0.000040
5 0.000132 0.006661 0.000094 −0.006088 −0.000005
6 0.000007 −0.006350 0.000011 0.000158 0.000000
7 0.000001 0.007430 0.000002 −0.000087 0.000000
8 0 −0.008365 0 0.000010 0
9 0.010318 0.000000
10 −0.012676 0.000000
11 0.015885 0.000000
12 −0.020201 0.000000
13 0.026007 −0.000001
14 −0.033808 0.000000
15 0.044301 0.000000
16 −0.058422 0.000000

The values shown are the deviations (in hartree) from the exact (full configuration-interaction) results. The divergent perturbation series are
subject to resummation in a number of ways (variation perturbation configuration interaction, Padé approximant, and coupled-cluster theory) all
converging to the exact limit

etc., by adjusting the cluster excitation operator T̂ . In the
above equations, |�0〉 is the reference wave function (or

determinant),
∣∣∣�p1

h2

〉
and

∣∣∣�p1 p2
h3h4

〉
are singly and doubly substi-

tuted determinants, E is the total electronic energy, and m is
the number of electrons. The (repeated) actions of the clus-
ter excitation operator T̂ and the Hamiltonian operator Ĥ on
a wave function are straightforward by virtue of the deter-
minant-based algorithm, regardless of the highest excitation
rank of T̂ . It should be noted that the Taylor expansion of
the exponential operator in Eq. (6) terminates after a finite
number of terms and hence the operation is computationally
well defined.

The determinant-based algorithm can compute the ener-
gies and wave functions of the coupled-cluster method
recursively through any arbitrary high order. Again, the trade-
off is between the generality or ease of implementation and
the optimal computational cost. The most naïve determinant
implementation will incur O(n!) operations even at the low-
est order of coupled-cluster theory [111], but the operation
cost can be easily reduced to O

(
n2k+4

)
for kth order cou-

pled-cluster method by inspecting the structure of projection
equations [114,115]. Furthermore, Kállay and Surján [114]
devised a scheme which, on the basis of the identify,

exp
(

T̂
)

|�0〉 =
[

m∏

k=1

exp
(

T̂k

)
]

|�0〉

=
[

m∏

k=1

lim
p→∞

(
1 + T̂k

p

)p
]

|�0〉 , (10)

updates the exponential wave function by acting the cluster
excitation operator once in every iteration instead of m times
(T̂k is k-fold cluster excitation operator). The computational
cost is however still significantly greater than the optimum
dependence of O

(
n2k+2

)
. Nonetheless, these higher-order

coupled-cluster results (Table 4) have become an invalu-
able benchmark for optimized manual [83,84] or automated
[72] implementations. Christiansen [116,117] extended this
to molecular vibrations recently.

Van Voorhis and Head-Gordon [118] also invoked the
algorithm in the facile implementation of the variational cou-
pled-cluster method [119] truncated at the double excitation
level. Unlike the standard projection-type ansatz, this method
uses an alternative energy definition of

E = 〈�| Ĥ |�〉
〈� | �〉 (11)

and variationally optimizes the cluster excitation operator T̂
in the wave function of Eq. (6). The determinant-based algo-
rithm is particularly well suited for this sort of performance
assessment as Eq. (7) is as easily evaluated in this algorithm
just as any other energy expressions. For a related analysis,
see Refs. [120–122].

4.4 Equation-of-motion coupled-cluster method

We have also extended the algorithm to general-order cou-
pled-cluster methods for excited states [123] (see also Ref.
[114]) and ionized and electron-attached states [124]. These
are based on a unified formalism [125–130] that is called
the equation-of-motion coupled-cluster theory and it uses the
wave function parameterized as

|�k〉 = exp
(

T̂
)

R̂k |�0〉 , (12)

for kth excited (or ionized or electron-attached) state. This is
also equivalent to time-dependent linear response coupled-
cluster theory when just excitation energies are considered
[131–138] (see also the next section). The cluster excitation
operator T̂ is held fixed at the one determined for the ground
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state (hence R̂0 = 1) and only the linear excitation (or ioniza-
tion or electron-attachment) operator R̂k will be varied such
that the wave function satisfies

〈�0| Ĥ |�k〉 = Ek, (13)

〈
�

p1
h2

∣∣
∣ Ĥ |�k〉 = Ek

〈
�

p1
h2

∣∣
∣ �k

〉
, (14)

〈
�

p1 p2
h3h4

∣
∣∣ Ĥ |�k〉 = Ek

〈
�

p1 p2
h3h4

∣
∣∣ �k

〉
, (15)

etc., in complete analogy to Eqs. (7)–(9). Hence, the equa-
tion-of-motion coupled-cluster theory combines the cluster
expansion that is suitable for electron-correlation in the ground
state and the configuration-interaction expansion that is the
most natural to describe an excitation (or ionization or elec-
tron-attachment) process (and the differential correlation
thereof) [130]. With this, the excited-state coupled-cluster
calculations including up to the sextuple [123] or decuple
[114] cluster and linear excitation operators have been per-
formed and the results were later used to verify manual [83,
84] and automatic [72] implementations. We have also stud-
ied all possible combinations of the truncation ranks of the
cluster and linear excitation operators and concluded that the
ones naturally suggested by the linear response derivation
(the equal highest rank for cluster and linear excitation oper-
ators) are also the best performing.

4.5 Symmetry-adapted-cluster configuration-interaction
method

The use of the determinant-based algorithm in coupled-clus-
ter methods, however, predates the above-mentioned work.
Nakatsuji and Hirao [139,140] and Nakatsuji [141–143] re-
ported a coupled-cluster method for closed- and open-shell
excited, ionized, and electron-attached states, years prior to
the modern implementations of above-mentioned excited-
state coupled-cluster methods (see, e.g., Refs. [144,145] for
the connection among these methods). They call the method
SAC-CI for symmetry-adapted-cluster configuration-inter-
action. The SAC-CI shares the same physical principle which
is the division of electron-correlation into dynamical corre-
lation in the ground state described by the cluster expansion
and differential correlation between the ground and excited
states accounted for by the linear expansion. The uniqueness
of their approach is the insistence upon the space and spin
symmetry adaptation of the wave function at various stages.
Hence, the ground- and excited-state wave functions are,

|�0〉 = Ô0 exp
(

T̂
)

|�0〉 , (16)

|�k〉 = (1 − |�0〉 〈�0|)Ôk R̂k Ô0 exp
(

T̂
)

|�0〉 , (17)

where the cluster excitation operator T̂ is a symmetry-adapted
linear-combination of spin-orbital excitation operator and
symmetry projectors Ô0 and Ôk further remove any sym-
metry contamination that may arise from the disconnected

clusters. The adjustable parameters are determined either var-
iationally or by the projection-type equations, defining vari-
ational or non-variational SAC-CI, respectively.

Nakatsuji [146] resorted to a determinant-based algo-
rithm (which they call excitator method) to implement these
methods, not just for the purpose of initial performance assess-
ment but to arrive at the production-level optimized pro-
grams. They form explicitly the exponential wave function
as a linear combination of Slater determinants by repeated
actions of cluster excitation operator on a reference wave
function. Once the exponential wave function is formed, the
subsequent procedure is the symmetry-adapted configura-
tion-interaction that is well suited to the determinant-based
algorithm. Nevertheless, such an implementation, as men-
tioned before, will have at least O

(
n2k+4

)
complexity for

kth order coupled-cluster method that is much greater than
the optimal dependence of O

(
n2k+2

)
. They managed to over-

come this increased cost dependence by aggressively reduc-
ing the effective number of determinants according to a
criterion guided by a perturbation theory argument [147].
Remarkably, the resulting computer program can perform
SAC-CI calculations of the excited states of porphin [148,
149] (see also Refs. [150,151]) or even larger molecules
[152–154]. Clearly, the space and spin symmetry adaptation,
the perturbation selection, and the so-called general- R exten-
sion [155–157] (the use of a higher-ranked linear excitation
operator than that of cluster operator) are all facilitated by
the determinant-based algorithm.

4.6 Combined coupled-cluster and perturbation methods

Another example that illustrates the strength of the deter-
minant-based algorithm was reported by us [158,159]. We
implemented the entire, new hierarchy of combined cou-
pled-cluster and many-body perturbation method for ground
and excited states. This was inspired by the vast success
[160] of second-order perturbation corrections to coupled-
cluster methods, such as CCSD+T(CCSD) [161], CCSD(T)
[162], CCSD(TQ) [163,164], CCSD(2) [75,158,159,165–
168], CR-CCSD(T) [169–171], CCSDT(2) [75,158,159].
They use a three- or four-tiered approach: variation (Hartree–
Fock, e.g.) for the reference wave function, cluster expansion
(CCSD, e.g.) for the majority of correlation, perturbation for
the tiny residual correlation, and perhaps configuration-inter-
action for differential correlation when an electronic transi-
tion is involved. Our formalism is based on a transparent
application of Rayleigh–Schrödinger perturbation theory to
the equation-of-motion coupled-cluster reference wave func-
tion that satisfies

H̄ R̂k |�0〉 = Ek R̂k |�0〉 , (18)

where H̄ = exp
(
−T̂

)
Ĥ exp

(
T̂

)
. Partitioning this effective

(similarity-transformed) Hamiltonian into the zeroth order
part and perturbation, H̄ = Ĥ0 + V̂ , in an appropriate pro-
portion, we arrive at recursive equations for order-by-order
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Table 5 Convergence of combined coupled-cluster and many-body perturbation theories for hydrogen fluoride and water (in their respective
ground states) with the 6-31G basis set (frozen core) [158,159]

Theory FH (0.917 Å) H2O (0.967 Å and 107.6◦)

CCS = MP1 = HF 0.131398 0.136671
CCS(2) = MP2 0.003723 0.008215
CCS(3) = MP3 0.004932 0.006577
CCSD 0.001032 0.001545
CCSD(2) 0.000004 0.000102
CCSD(3) 0.000034 0.000077
CCSDT 0.000350 0.000449
CCSDT(2) 0.000031 0.000049
CCSDT(3) 0.000008 0.000013
CCSDTQ 0.000008 0.000012
CCSDTQ(2) 0.000001 0.000002
CCSDTQ(3) 0.000000 0.000000
CC5 0.000001 0.000003
CC6 0.000000 0.000000
CC7 0.000000 0.000000
CC8 = FCI 0 0
CCSDT-1a 0.000354 0.000492
CCSDT-2 0.000403 0.000587
CCSDT-3 0.000409 0.000590
CCSD+T(CCSD) 0.000287 0.000435
CCSD(T) 0.000414 0.000534
CCSD(TQ f )� 0.000014 0.000075

The values shown are the deviations (in hartree) from the exact (full configuration-interaction) results

perturbation corrections to energy and wave functions:

E (i)
k = 〈�0| L̂†

k V̂ R̂(i−1)
k |�0〉 , (19)

(
E (0)

k − Ĥ0

)
R̂(i)

k |�0〉 = V̂ R̂(i−1)
k |�0〉

−
i∑

j=1

E ( j)
k R̂(i− j)

k |�0〉, (20)

where L̂†
k is the deexcitation operator corresponding to the

left-hand side eigenvector of H̄ matrix representation for the
kth electronic state. Each order of perturbation theory has a
well-defined wave function and energy and every operation in
Eqs. (18)–(20) is a combination of a finite number of second-
quantized operations. With the determinant-based algorithm,
we have obtained the benchmark results for the perturba-
tion series to any arbitrary high order starting from all orders
of coupled-cluster theory for the ground and excited states
through the equivalents to the full configuration-interaction
method (see Table 5). An important conclusion about the
(lack of) size-extensivity of the methods has been drawn on
this basis. The perturbation series included the second-order
corrections to coupled-cluster methods for the ground state
[CCSD(2), CCSDT(2)] [75] and second- [76] and higher-
order corrections to configuration-interaction singles [CIS(2),
CIS(3), CIS(4)] [77], which were later implemented into opti-
mized programs by the Tce (see Sect. 2.8).

4.7 Multireference coupled-cluster and perturbation
methods

The CI-like algorithmic kernel of the determinant-based
scheme permits flexible multi-determinant reference for cou-
pled-cluster and perturbation theories. Zarrabian and cowork-
ers studied the convergence of multireference perturbation
expansions of the ground-state correlation energies and
excitation energies with and without Padé approximant
convergence acceleration [172–174]. They employed a
straightforward generalization of Rayleigh–Schrödinger per-
turbation theory to multireference wave function [175] which
led to an order-by-order expansion of the Bloch equation. The
perturbation series can be computed recursively through any
arbitrarily high order by the determinant-based algorithm.
Olsen’s initial implementation of a general-order determi-
nant-based coupled-cluster method also addressed the use of
multireference wave function [115] (see also Ref. [176] and
the next section). Olsen introduced a general active space,
which can be more compact than complete active space and
more flexible than restricted active space [93] and which al-
lows almost arbitrary divisions of orbital space and flexi-
ble conditions imposed on the excitation operators permitted
in each orbital space. For instance, one can use only those
higher-order cluster excitation operators (T̂3, T̂4, etc.) that in-
volve a certain number of selected important orbitals (active
orbitals). This is closely related to the state-specific multire-
ference coupled-cluster methods of Oliphant, Adamowicz,
Piecuch, and others [85–87,177–180]. In fact, Adamowicz’s
group also recently developed an automated system that gen-
erated the diagrammatic equations and computer programs
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(which however did not define intermediate tensors as bi-
nary tensor products but evaluated each of the multiple ten-
sor products at once) for this class of methods including the
complete-active-space coupled-cluster method [181].

4.8 String-based coupled-cluster method

While evolving out of the above-mentioned determinant-
based algorithm [114], Kállay and Surján’s [39] string-based,
general-order coupled-cluster method is distinguished from
its predecessor in a number of important respects. It does not
expand a wave function explicitly as a linear combination of
Slater determinants, which would make the algorithm inevi-
tably much more expensive than an optimal implementation.
Rather, it carries out the operations that are essentially equiv-
alent to evaluating the conventional sum-of-product tensor
expressions, which are also automatically derived. The strings
therefore are no longer associated with Slater determinants
but are employed to address tensors such as the molecu-
lar integrals, cluster excitation amplitudes, and intermedi-
ates that possess index permutation symmetries. Kállay and
Surján [39] developed an algorithm to take advantage of the
complex index permutation symmetries of intermediate ten-
sors when storing them or contracting them with other tensors
(Sect. 3.4). Hence, this remarkable paper [39] introduces at
least three innovative elements in coupled-cluster implemen-
tation: (1) the automatic diagrammatic derivation of coupled-
cluster equations; (2) the structure of intermediate tensors; (3)
the string-based mapping of tensors with index permutation
symmetries. Together, they accomplish the O

(
n2k+2

)
algo-

rithm that also incorporates the index permutation and other
symmetries for kth order coupled-cluster method.

The string-based algorithm is complementary in many
ways to the automatic derivation and implementations de-
scribed in the previous section, with the primary difference
being in whether the symbolic manipulations occur at run
time or compile time. However, a relative merit of the string-
based algorithm may be its compact program kernel that is
well suited to extensions to higher orders and multirefer-
ence wave functions. By virtue of this algorithm, Kállay and
coworkers have rapidly implemented analytical first [90] and
second [182] derivatives for coupled-cluster methods at any
arbitrary high order and excited-state [74] and the state-selec-
tive multireference [176] coupled-cluster methods also at any
order. These implementations, which would be unthinkable
without computerized symbolic algebra, are enabling highly
accurate chemical predictions [12,183–185].

5 Future prospects

With the computing power increasing steadily, a greater pro-
portion of intellectual work and technical decisions will be
delegated to computers. In quantum chemistry, this manifests
itself as the automation of the development of highly com-
plex computational methods that exceeds normal human abil-
ity. With the determinant-based algorithm, it seems entirely

possible to develop an interpreter that performs numerical
calculations of most any given many-body electron-correla-
tion method specified only by its highest-level definition in
terms of Slater determinants and operators. Some methods
that prove the most promising can then be translated into
production-level computer programs that take advantage of
domain-specific optimizations (spin, spatial, index permuta-
tion symmetries, sparsity and locality, etc.) and mathematical
and computer-science optimizations (strength reduction, fac-
torization, loop fusion, data locality, parallelization, etc.) by
an automated system such as the Tce or by the string-based
algorithm. A new generation of quantum chemists may be
able to develop new electron-correlation methods without
having to know the inner workings of the symbolic algebra
involved, although the contrary opinion also exists among
the experts that the development always requires the in-depth
knowledge of derivation and computer implementation pro-
cesses.

The applications of these computational methods may
also be automated to the extent that an intelligent computer
system will decide what particular method and basis set (or a
combination thereof) should be used for some desired chem-
ical property of any given molecule. This is in line with the
effort by Pople and co-workers [186–188] to provide an ulti-
mate blackbox computational method (Gaussian-n theory)
or Bartlett’s [189] convergent sequence: HF < MP2 ≈ MP3
< CCD < CCSD ≈ MP4 < CCSD(T) < CCSDT < full CI.
However, the computers may enable more flexible and on-
demand adjustments of the optimal combination of methods
and basis sets for each case.
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